Sustainability of Western Water, Water Storage as Snow, and Trans-Basin Diversions

Organizations: US LTER, ILTER, MRI, LTER Europe, GBMA, USAID

Outline

- Overview of mountain hydrology
- NWT LTER basic research results
 - The new normal?
 - Non-stationarity world
- Colorado headwaters research: USDA/NSF
 - Suits in the beltway get it
- Himalaya's: USAID
 - Water problems are global

Water Sustainability & Snowmelt

1/6th of the population and 1/4th of GDP

Rising CO₂ Will Lead to Accelerated Rise in Air Temperature

Making a water-secure world – the three I's

Mountains are water towers

C1 & D1 Maximum Temperature Trends 1952 – 2007

Warmer in subalpine, colder during winter in alpine. Albedo effect

High-Elevation Air Temperature

- Increasing air temperature since early 1980's
- Summer air temps warming fastest
- Earlier lake ice-out dates

5°C increase in 25 years

D1 Mean July Minimum Temperature

Mountain Pine Beetle

Changes in veg affect pika's?

Pika's: alpine Polar bears: Arctic Penguins: Antarctic

Iconic species and P

Arikaree glacier is dying

Arikaree Glacier: Mass balance (Bn), cm water equivalent.

Green Lakes Valley June 22, 2011

Green Lakes valley June 22, 2012

The new normal

"Normal" is now about 10% less snow compared to 10 years ago.

Ecohydrological vulnerability to changes in climate and land use in the Colorado River Basin headwaters: implications for water policy and management

> Noah Molotch (PI) Patrick Bourgeron Mark Williams Leanne Lestak

47

David Gochis Kathleen Miller Olga Wilhelmi David Yates

NCAR.

Colorado Transbasin Diversions:

24 major transbasin diversions

Approx. 560,000+ AFY moved from Colorado River Basin to E. Slope (Roughly 20-25% of instate consumptive use of CO River)

Science Questions

- Q1: How will climate-related changes in snowmelt timing and magnitude alter the partitioning of the water balance?
- Q2: How will alterations in snowmelt timing and landscape disturbances interact to influence ecosystem structure, function, and streamflow?
- Q3: How will stakeholders be affected by different scenarios of climate / land-scape change associated with changes in snowmelt partitioning and the fulfillment of inter-basin water transfers?
- Q4: How could improved information regarding future snowmelt timing contribute to more effective long-range multi-stakeholder water and forest planning within the current policy and legal institution framework?

Regional Climate Modeling: Precipitation

Regional Climate Modeling using WRF-NOAH

Activity Lead: Gochis, NCAR

Rasmussen et al., 2012 J. Climate

Regional Climate Modeling: Snowpack

Scale Dependent Snowpack Behavior

- Errors reduced at higher resolution.
- Spring snowpack conditions poorly resolved at coarser scale.

Future:

Q1

- Perform historical spatially explicit evaluations (2000 – 2008).
- Predictions (2045 2053) with dynamic land cover.

Snow Extent in the Colorado River Basin from MODIS

April 6, 2009

April 8, 2010

Ecosystem Sensitivity to Ex-Urban Population Growth

Fire Protection

Summit County

Q2

Historical populations		
Census	Pop.	<u>%±</u>
1900	2,744	—
1910	2,003	-27.0%
1920	1,724	-13.9%
1930	987	-42.7%
1940	1,754	77.7%
1950	1,135	-35.3%
1960	2,073	82.6%
1970	2,665	28.6%
1980	8,848	232.0%
1990	12,281	38.8%
2000	23,548	91.7%
2010	27,994	18.9%

Ecosystem Sensitivity: LANDIS Model

Q2

Derive LAI and Forest Cover Fraction for RCM Simulations

Activity Lead: Bourgeron, CU

Modeling the Built Environment with the Water Evaluation And Planning (WEAP) Model

Upper Colorado Water System "Objects" in WEAP:

18 Rivers – linked to

catchments

Q3

Blue Snake

Ten Mile

Fraser

Williams Fork

... Colorado

15 Diversions

Hoosier Homestake (Fry Ark) Boustead (Fry Ark) Roberts Tunnel Alva B. Adams (CBT) Windy Gap (CBT) 13 Reservoirs Dillion Green Mtn Granby-Grand Lake

6 Demands

Agriculture Environmental/Instream flows Example: WEAP Model Implementation for Denver Water for the Upper Blue River and Associated Trans-basin Diversions

Sustainability: Modeling climate change impacts on the built environment with WRF & WEAP

- 4km WRF simulations forcing WEAP model
- Includes infrastructure and water rights requirements.
- Shift to reduced summertime and autumn flows.
- reservoir storage is reduced during most years

Socioeconomic Analysis

• Colorado has the most active water market in the nation.

04

- Transfers: tight water supplies result in third party impacts.
- Water markets: need augmentation (e.g. Basin Roundtable and Inter-basin Commission Process).
- The effectiveness of coordination depends on decision-making dynamics and information use.

Expected Changes In Connectivity Among Elevation Zones and Disturbance Regimes Related To Climate And Land Use Change

CHARIS - CONTRIBUTION TO HIGH ASIA RUNOFF OF ICE AND SNOW

The CHARIS project began in 2011 with funding from USAID to the University of Colorado

PI: Richard Armstrong, NSIDC

Co-I: Mark Williams, INSTAAR

Our study region includes the Amu Darya, Syr Darya, Indus, Ganges, and Brahmaputra river basins

Map courtesy B. Raup. Glacier coverage from the RGI and GLIMS is in cyan light blue color (See <u>http://www.glims.org/</u> for information on RGI and other glacier outline data)

http://nsidc.org/charis/

Pyramid field station, Khumbu Nepal, 5,000 m

Precip bucket KalaPatthar Everest in back

Summary

- Improve future predictions of water availability through integrated climate / snowpack / land cover / water management models.
- Identify winners and losers under future water availability scenarios.
- Identify socioeconomic pressures associated with reduced water availability & identify options for mitigation.

